Deep Reinforcement Learning: An Overview
نویسنده
چکیده
We give an overview of recent exciting achievements of deep reinforcement learning (RL). We start with background of deep learning and reinforcement learning, as well as introduction of testbeds. Next we discuss Deep Q-Network (DQN) and its extensions, asynchronous methods, policy optimization, reward, and planning. After that, we talk about attention and memory, unsupervised learning, and learning to learn. Then we discuss various applications of RL, including games, in particular, AlphaGo, robotics, spoken dialogue systems (a.k.a. chatbot), machine translation, text sequence prediction, neural architecture design, personalized web services, healthcare, finance, and music generation. We mention topics/papers not reviewed yet. After listing a collection of RL resources, we close with discussions.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملDeep learning in neural networks: An overview
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarizes relevant work, much of it from the previous millennium. Shallow and Deep Learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links betwe...
متن کاملPolicy Search in Continuous Action Domains: an Overview
Continuous action policy search, the search for efficient policies in continuous control tasks, is currently the focus of intensive research driven both by the recent success of deep reinforcement learning algorithms and by the emergence of competitors based on evolutionary algorithms. In this paper, we present a broad survey of policy search methods, incorporating into a common big picture the...
متن کاملTutorial: Recent Advances in Deep Learning
The past several years have seen a dramatic acceleration in artificial intelligence (AI) research, driven in large part by innovations in deep learning and reinforcement learning (RL) methods. The relevant developments, as showcased in a series of recent high-profile publications in Nature and elsewhere (e.g., Graves et al., 2016; Mnih et al., 2015; Silver et al., 2016), have generated intense ...
متن کاملDraft: Deep Learning in Neural Networks: An Overview
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1701.07274 شماره
صفحات -
تاریخ انتشار 2017